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QSAR Modeling in the Chemical Enterprise

QSAR models are widely employed for a wide variety of
key properties

Long track record of impact in pharmaceutical projects

Opportunities for improvement

Creating models is largely an expensive, expert activity

— No single machine learning method or descriptor set is
ideal for all properties

— Significant human time can be spent experimenting to
identify high-performing models

— Domain experts possess deepest understanding of data to
be modeled

QSAR models can be non-trivial to deploy

No single machine learning approach is ideal for
modeling 10s to 10s of millions of compounds
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Democratizing QSAR Modeling with AutoQSAR

- QSAR "expert in a box” to automatically create and validate predictive
models
— Ensure input data adequacy
— Automated best practices workflow

* Descriptor generation, feature selection, use of multiple machine learning methods,
automated training/test set splits

— Methods to minimize overfitting
— Advanced modeling approaches such as consensus methods

— Assessment of applicability domain

* Easily deploy predictive models

— Don’'t need to create scripts to generate descriptors and run machine learning method for
each QSAR model

— Simple command line, desktop and web app deployment
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Deep Learning

*  Deep learning methods are becoming very popular in image recognition,
game playing, and question and answer systems.
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More Deep Learning Hype

= SECTIONS LATEST POPULAR Q SEARCH

ANNALS OF MEDICINE APRIL 3, 2017 ISSUE

Al VERSUS MD.

What happens when diagnosis is automated?

By Siddhartha Mukherjee
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It’s just completely obvious that in
five years deep learning is going to
do better than radiologists.

Hospitals should stop training

radiologists now.

- Geoffer

y Hinton
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Deep Learning

+ Lots of excitement to try to use these methods in other contexts
* Should deep learning be used in drug discovery?

* Where does it provide the greatest benefit?
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Artificial Neural Network Overview

Hidden
e C(ollection of units called neurons
(Circles Here)

e Each neuron computes a function over
its inputs (real numbers)

e Each neuron and can be connected to
multiple outputs

e Trained using back propagation
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Universal Function Approximation Theorem

e Artificial Neural Networks can represent ANY function

e This does not pan out in practice
o Limited data and compute power

e Requires us to create data and compute efficient
models.
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Deep Neural Network Image Classification

ImageNet Large Scale Visual Recognition Challenge Model Accuracy
30

22.5
15

7.5

2010 2011 2012 2013 2014 Human  ArXiv 2015

As of 2015, a 27 layer DNN was more accurate than a
human (Stanford student) at sorting 100,000 images into
1,000 different pre-specified categories
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Deep Neural Network Image Classification

+ The ImageNet classification challenge is very difficult:

Ruler King crab Sidewinder Salt shaker Reel Hatchet
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Convolutional Neural Networks
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Convolution Layer

e Slide a learnable mask across the image.

Input image Convolution Feature map
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Deep Neural Network Image Classification

A unique aspect of Deep Learning is the ability learn new features as the

network is trained:

Feature Hierarchies: Vislon

output layer

More layers allow
for the learning of
more complicated
features
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recognition might
suggest a 10 layer
deep convolutional i
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be good at thistoo
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e Started as a Pande group (Vijay Pande Lab)
project at Stanford

e Aims to nrovide a hiah aualitv open-source A
toolchain that democratizes the use of
deebp-learnina in drua discoverv. materials
science. and auantum chemistry.

o GPU Enabled Algorithms l'_'EE =rri

o Built on top of Google TensorFlow

R tJ

github.com/deepchem/deepchem
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https://pande.stanford.edu/

AutoQSAR w/ DeepChem Feature Generation

2D Graphic description of molecules

e Each node represents an atom Atom k
e Each edge represents a bond

e Atom features include atoms-type, local o
c g . topology : ’\ H

valences, formal charges, and hybridization PooE
features . .
: . ®.e

Graph Convolution o of

e Automatically learn new local
features that suit the endpoint

e These new features are then converted
to molecular feature which is feed to
dense neural network for model
building

Molecular Graph Convolutions: Moving Beyond Fingerprints Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley

Graph
Convolution

New feature for
Atom k
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Graph Convolutions

Hidden layer

Valdecoxib ( pain relief)
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Molecular Graph Convolutions: Moving Beyond Fingerprints Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley
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AutoQSAR w/ DeepChem Model Architecture

2D Structure
‘// ;

: r Physical
Graphic d t
rapnic TSCFIp ion features
Graph Convolution Model details:
y * Physical features are
Graph Gather optional
e +  Training the model by
Dense(128) with keep minimizing the loss
probability 0.5 { 0.75 functions
Dense(128) with keep
probability 0.5/ 0.75
Task1 Output1 Task2 Output2
\
Loss
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Traditional AutoQSAR
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Results comparison -- Datasets

FUTURE MEDICINAL CHEMISTRY, VOL. 8 NO. 15| RESEARCH ARTICLE ﬁ normal

AutoQSAR: an automated machine learning tool for
best-practice quantitative structure—activity relationship
modeling

Steven L Dixon, Jianxin Duan, Ethan Smith, Christopher D Von Bargen, Woody Sherman &
Matthew P Repasky ™

:19 Sep 2016 | https://doi.org/10.4155/fmc-2016-0093

MoleculeNet:
A Benchmark for Molecular Machine Learning’

Zhengin Wu,** Bharath Ramsundar,”* Evan N. Feinberg,”? Joseph Gomes,“! Caleb
Geniesse,” Aneesh S. Pappu,” Karl Leswing,? and Vijay Pande**

e http://moleculenet.ai
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http://moleculenet.ai

Results comparison --- low data applications

Experimental setup:

All tasks have less than 5000 data points
22 regression tasks

32 classification tasks
Comparing with QSAR results from AutoQSAR

Metrics:

Q? and MUE for regression problems
Area under curve(AUC) for classification problems
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Results comparison --- low data applications

Regression dataset description

AutoQSAR reporting publication dataset!

e Binding affinity data:

o Ten IC50 datasets that cover seven different protein targets: Cyclin-dependent kinase 2 (CDK2),
Checkpoint kinase 1(Chk1), Factor Xa (FXa), Heat shock protein 90 (Hsp90), Liver X receptor
beta (LXR-B), Methionine aminopeptidase 2 (MetapZ2), and Thrombin

o  Number of ligands per data set ranges from 73 to 203

e Solubility data
o 1708 data points

e Bioaccumulation
o  Bioconcentration factors (ratio of chemical concentration in fish to the concentration in water)
o 589 data points

Freesolv?

e Solvation free energy
o 640 data points

1 AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling. Dixon SL, Duan J, Smith E, Von Bargen CD, Sherman W, Repasky MP  Future Med Chem (2016) 8: 1825-1839
2 FreeSolv: A database of experimental and calculated hydration free energies, with input files. David L. Mobley and J. Peter Guthrie J Comput Aided Mol Des. 2014 Jul; 28(7): 711-720.
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Results comparison --- low data applications

Regression in Q2

B AutoQSAR (Q2) M DeepAutoQSAR (Q2)
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DeepChem option has similar performance
to AutoQSAR in low-data regression tasks

Both methods look better than they should
due to random split effects
(A time-split is more reasonable)

Despite over-optimistic performance,
random splits allow for head to head
comparison with earlier work

Average AutoQSAR | w/ DeepChem
Weighted by | 0.61+ 0.22 0.62+£0.20
task
Weighted by | 0.73 £ 0.20 0.75+0.19
data
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Results comparison --- low data applications

Regression in Q2

B DeepAutoQSAR(Q2) - AutoQSAR(Q2)
On average, DeepChem option

03
has similar performance as
65 AutoQSAR in regression R?
0.1
0
-0.1
Average AutoQSAR | DeepAutoQAR
0.2
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Results comparison --- low data applications
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0.75

0.5
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Regression in MUE (log unit)

B AutoQSAR (test set MUE) [l DeepAutoQSAR (test set MUE)
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DeepChem option performs
slightly worse but within error

Both methods again look
better than they should due to
random split effects

Average AutoQSAR DeepAutoQAR

Weighted 0.54 +0.13 0.64 £ 0.17
by task

Weighted 0.62 £0.11 0.78 £0.18
by data
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Results comparison --- low data applications

Regression in MUE (log unit)

B AutoQSAR(MUE) - DeepAUTOQSAR(MUE)
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DATA set (MAE log)

DeepChem option performs
slightly worse but within error

Average AutoQSAR DeepAutoQAR
Weighted | 0.54 £ 0.13 0.64 £ 0.17

by task

Weighted | 0.62+/-0.11 0.78+/-0.18

by data
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Results comparison --- low data applications

Solubility investigation

Why does DeepChem option sometime
have worse performance?

AlogP vs. solubility (R2 = 0.72)

12

10 +

Solubility is an illustrative case:

» AlogP shows a good correlation
with solubility in this data set

» AlogP is used as an input
descriptor for AutoQSAR but not in ot
DeepChem model. ol

» This gives AutoQSAR an advantage

* New DeepChem model with AlogP
has MUE 0.59 comparing with 0.61 2 e e 6 4 - 5 2
from AutoQSAR PR

AlogP
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Results comparison --- high data applications

Experimental setup:

All tasks have Iar%er than 5000 data points
88 regression tasks
30 classification tasks

Metrics:

Q? and MUE for regression problems
Area under curve(AUC) for classification problems

Training strategies:

Using 5000 as training set (AutoQSAR scaling limitation)
90% as training set
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Results comparison --- high data applications

Dataset description

e HIVreplication inhibition data:

o 40426 compounds from Drug Therapeutics Program AIDS Antiviral Screen, which tested the
ability to inhibit HIV replication. Results are placed into three categories: confirmed inactive,
confirmed active and confirmed moderately active. In this study, confirmed active and
confirmed moderately active are combined as one class.

e Toxicity dataset (Tox21 2014):
o 8014 compounds with quantitative toxicity measurement on 12 different targets.
m  NR-ARNR-AR-LBD,NR-AhR,NR-Aromatase,NR-ER,NR-ER-LBD,NR-PPAR-gamma,SR-ARE,
SR-ATADS5,SR-HSE,SR-MMP,SR-p53
o  On average, each target has ~ 6600 data points
e Virtual screening benchmark dataset:

o  Maximum unbiased validation(MUV) dataset, which contains ~ 90,000 compounds over 17
targets.

o  On average, each target has ~14700 data points

MoleculeNet: A Benchmark for Molecular Machine Learning Zhengin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, Vijay Pande arXiv:1703.00564 SC H RODI NG ER



Results comparison --- high data applications

Using 5000 as the training data (classification AUC)

W AutoQSAR (test set AUC) [ DeepAutoQSAR (test set AUC)

0.6
I:I.S I .
0.4 .

Tox21(12 tasks) MUV(17 tasks) HIV

+  Apples-to-apples, both
methods trained to
5,000 randomly
selected points

* DeepChem option
performs clearly better
In Tox21 dataset

*  The other two datasets
shows similar
performance
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Results comparison --- high data applications

Using 5000 as the training data (classification AUC)

B DeepAutoQSAR(AUC) - AutoQSAR(AUC)

o +  Apples-to-apples, both

| methods trained to
5,000 randomly
selected points

* DeepChem option
performs clearly better
In Tox21 dataset

*  The other two datasets
shows similar
performance

0.2

0.1

-0.1
Tox21(12 tasks) MUV(17 tasks) HIV
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Results comparison --- high data applications

Further increase the training data size --- using 90% as training set

AutoQSA | DeepChem | DeepChem | Data size
0,
DATAset | R(G000 | (8000 | (80% | (number
training training training of
AUC) AUC) AUC) targets)
MUV 0.50 0.49 0.72 ”14;90(1
HIV 0.68 0.63 0.77 40426

HIV

B AutoQSAR (test set AUC) [ DeepAutoQSAR (5000, test set AUC)

0.8

0.7

0.6

0.5

0.4

DeepAutoQSAR (test set AUC)

HIV

DATA set (AUC)

MUV(17 tasks)

AutoQSAR doesn’t scale to training sets over 5000 training data point

DeepChem option can use additional data to obtain much better performance
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Generalization of DeepChem option ---

Similarity between training and test data set

» Similarity metrics
— For each cmpd in test set, calculate the max similarity (S_max) this cmpd and all
training cmpds
— Take tﬁe average of max similarities S_ave = Mean( S_max)

Selected MUV dataset 0.76 0.65

Selected Tox21 dataset 0.78 0.66
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Generalization of DeepChem Option to Novel Scaffolds

5000 training samples

Classification

Data set
(AUC)
Tox21
HIV

MUV

% active
compounds

3.5

0.2

DeepChem
single task
(random)
0.77

0.63

0.51

AutoQSAR
(random)
0.54

0.68

0.50

DeepChem
single task
(scaffold)
0.62

0.60

0.54

AutoQSAR
(scaffold)

0.55
0.50

0.54
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Computational Cost (in seconds)

Improvements to AutoQSAR speed
can be made with parallelization

Il DeepAutoQSAR (w/ GPU) [ DeepAutoQSAR (w/o GPU) AutoQSAR
DATA set DeepChem | DeepChem | AutoQSAR 40000
size (w/ GPU) (w/o GPU)
~300 160 s 270s 3000 s 20000
~1200 440 s 790 s 16000 s 10000
~5000 1600 s 3000 s 31000 s 0 — —_ —%—

DATA set size

Even without GPU resources, DeepChem option is
significantly faster
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Remarks for single task DeepChem comparison

 For low dataﬁoroblems, the DeepChem option performance is comparable
to AutoQSA

— For data set which there are dominant descriptors AutoQSAR may perform

better.
* Even using equivalent training sets (5000 data points) in high-data

applications, ee{pChem option may have an advantage over AutoQSAR

—  Performs significantly better in Tox21
— Performs similarly in other two dataset (MUV and HIV)

*  The DeepChem option can scale to much larger training sets in high-data
Ieiﬁ\F/alications (200,000), this leads to much better performance in MUV and
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Demo

Building a Model and Evaluation with DeepChem option
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Demo

AutoQSAR model in LiveDesign
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Updating Model Throughout Time

Average Max Similarity to Project Compounds

0.96 4

Average Max Similarity

0 5 10 15 20 5 30
Months Since Project Start
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Future Direction

Adding atom level user descriptors to Deep Learning Models
LiveDesi%n Panel for Visualizing Results

More Robust Splittin? Algorithms
Domain Of Applicability Estimates
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Conclusion

Deep learning methods out-perform existing methods on large datasets

*  Deep learning performs within error on smaller datasets as ensembling of
traditional methods at lower computational cost.

*  Deep learning is not a magic bullet. The improvements in model
performance are small to modest over existing state of the art.

Everyone can run these cutting methods reliability and out of the box.
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karl.leswing@schrodinger.com

https://gitter.im/deepchem/Lobby
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Scientific leader in life sciences and materials research




